Local Translation Prediction with Global Sentence Representation

نویسندگان

  • Jiajun Zhang
  • Dakun Zhang
  • Jie Hao
چکیده

Statistical machine translation models have made great progress in improving the translation quality. However, the existing models predict the target translation with only the sourceand target-side local context information. In practice, distinguishing good translations from bad ones does not only depend on the local features, but also rely on the global sentence-level information. In this paper, we explore the source-side global sentence-level features for target-side local translation prediction. We propose a novel bilingually-constrained chunkbased convolutional neural network to learn sentence semantic representations. With the sentencelevel feature representation, we further design a feed-forward neural network to better predict translations using both local and global information. The large-scale experiments show that our method can obtain substantial improvements in translation quality over the strong baseline: the hierarchical phrase-based translation model augmented with the neural network joint model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Machine Translation through Global Lexical Selection and Sentence Reconstruction

Machine translation of a source language sentence involves selecting appropriate target language words and ordering the selected words to form a well-formed target language sentence. Most of the previous work on statistical machine translation relies on (local) associations of target words/phrases with source words/phrases for lexical selection. In contrast, in this paper, we present a novel ap...

متن کامل

Syntactic Category Prediction for Improving Translation Quality in English-Korean Machine Translation

This paper proposes the syntactic category prediction for improving translation quality. In parsing using sentence segmentation, the segments are separately parsed and then the parsing results of each segment are combined to generate a global sentence structure. The syntactic category prediction guides the parser to identify relationships among segments and to select the correct parsing results...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Syntax-Directed Attention for Neural Machine Translation

Attention mechanism, including global attention and local attention, plays a key role in neural machine translation (NMT). Global attention attends to all source words for word prediction. In comparison, local attention selectively looks at fixed-window source words. However, alignment weights for the current target word often decrease to the left and right by linear distance centering on the a...

متن کامل

Mental Representation of Cognates/Noncognates in Persian-Speaking EFL Learners

The purpose of this study was to investigate the mental representation of cognate and noncognate translation pairs in languages with different scripts to test the prediction of dual lexicon model (Gollan, Forster, & Frost, 1997). Two groups of Persian-speaking English language learners were tested on cognate and noncognate translation pairs in Persian-English and English-Persian directions with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015